What are the differences between data science, data mining, machine learning, statistics, operations research, and so on? Here I compare several analytic disciplines that overlap, to explain the differences and common denominators. Sometimes differences exist for nothing else other than historical reasons. Sometimes the differences are real and subtle. I also provide typical job titles, types of analyses, and industries traditionally attached to each discipline. Underlined domains are main sub-domains. Data Science First, let's start by describing data science, the new discipline. Job titles include data scientist, chief scientist, senior analyst, director of analytics and many more . It covers all industries and fields, but especially digital analytics, search technology, marketing, fraud detection, astronomy, energy, healhcare, social networks, finance, forensics, security (NSA), mobile, telecommunications, weather forecasts, and fraud detection. Projects ...